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The magnetic moment of individual living magnetic bacteria was determined by 
motion analysis in a time-dependent magnetic field. For this purpose we had to 
estimate the drag exerted on the moving bacterium by the surrounding liquid. First, the 
bacterium was approximated by an ellipsoid. In order to determine drag coefficients for 
more complicated (and realistic) forms, a model experiment was built. In this 
experiment enlarged models of bacteria were rotated in a viscous liquid and the torque 
acting upon them was measured. Computing algorithms were developed in order to 
calculate drag coefficients of magnetic bacteria and to simulate their motion in 
magnetic fields. The experimental and numerical determination of the drag coefficients 
agree within their error bounds. Besides the determination by motion analysis, the 
bacterial magnetic moment was also calculated from the number and size of magnetic 
particles contained in the bacterium as seen in an electron microscope. The results of 
both calculations agree well. 

1. Introduction 
Magnetic bacteria were discovered by Blakemore (1975). In contrast to other 

bacteria, magnetic bacteria have a magnetic dipole moment caused by chains of tiny, 
submicroscopic magnetite particles - called magnetosomes by Balkwill, Maratea & 
Blakemore (1980) - inside the bacterium. 

In the ambient Earth's magnetic field the swimming bacteria are passively oriented 
like a compass needle and then move automatically along the field lines by self- 
propulsion. The direction of the magnetic moment is such that the bacteria always 
swim downwards. This enables them to swim straight downwards to the sediment layer 
which provides the most favourable living conditions, when they have been whirled up 
from the ground. 

Rather than being a rarity of nature, magnetic bacteria are widespread in both 
marine and freshwater environments (Moench & Konetzka 1978; Towe & Moench 
1981; Blakemore 1982; Spormann & Wolfe 1984; Sparks et al. 1986; Oberhack & 
Siissmuth 1987; Farina, Lins de Barros & Esquivel 1988; DeLong, Frankel & 
Bazylinski 1993). They exist in both the northern and southern hemispheres and also 
near the equator (Kirschvink 1980; Blakemore, Frankel & Kalmijn 1980; Frankel et 
al. 1981). 

t Present address : Department of Earth and Planetary Sciences, Hoffman Laboratory, Harvard 
University, 20 Oxford Street, Cambridge MA 02138, USA. 
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For our study we used magnetic bacteria from lakes in the Alpine foreland of 
Southern Germany. Here the habitat of the magnetic bacteria comprises the uppermost 
2 cm of the sediment, with a maximum population density of approximately lO'/ml 
occurring at a depth of 2-10 mm below the water/sediment interface. This zone is 
characterized by an 0,-concentration approaching zero. 

A large variety of different forms of magnetic bacteria was found, including spirilli, 
cocci, vibrios, and rod-shaped bacteria. The phylogenetic relationship for some of 
these types has been established by Spring et al. (1992) by analyses of subunits of 
ribosomal RNA sequences. 

The aim of this study is to calculate the swimming path of magnetic bacteria in 
varying magnetic fields and subsequently to deduce their magnetic moment from 
motion analysis. 

2. Methods of determining the magnetic moment of magnetic bacteria 
Assuming that all magnetosomes within a bacterium are single-domain magnetite 

particles and that the magnetic moments are aligned parallel to the long axis of the 
particle chain, the total moment of a bacterium can be calculated from the size and 
number of the magnetosomes as determined by electron microscopy. For the type of 
bacterium shown in figure 1 a magnetic moment of the order of magnitude of 

The obvious disadvantage of this method is that certain assumptions have to be 
made on the alignment of the magnetic moments of the individual magnetosomes. We 
therefore applied a different method which determines the bacterial magnetic moment 
independently of electron microscopy from the analysis of the movement of the 
bacterium in rotating magnetic fields (Petersen, Weiss & Vali 1989). 

In a constant homogeneous magnetic field the forward speed of a magnetic 
bacterium is given by the balance between its propulsive force and the opposing viscous 
drag. In a rotating magnetic field however, a magnetic torque is also acting, which 
causes the bacterium to rotate in addition to its forward movement. The bacterium 
then swims in a circle (figure 2b) .  Without a rotating magnetic field the bacteria swim 
straight ahead (figure 2a). They are presumably only passively turned by the magnetic 
field. Because we have conditions of Stokes flow (see below), the linearity of the 
equations allows us to treat the rotation independently of the forward motion to the 
extent that the resistance factor and orientation of the bacterium are unaffected by 
movements. 

The rate of rotation of the bacterium is given by the balance between the magnetic 
torque and an opposing viscous drag, the latter increasing with rotational speed. The 
instantaneous direction of the magnetic moment p of the bacterium is not parallel to 
the applied rotating field H, the direction of the moment lagging behind that of the field 
by an angle ( p ,  B )  so as to give a torque ,u x B, of magnitude p B  sin ( p ,  B) ,  which tries 
to rotate the bacterium to be more parallel to B. 

As bacteria are so small (approximately 1-10 pm) their hydrodynamics is described 
by a very low Reynolds number (Purcell 1977). For a typical length I, = 6 pm, a typical 
swim velocity u, = 30 pm s-' and the kinematic viscosity of water v = m2 s-', we 
obtain a Reynolds number 

G cm3 was thus obtained. 

Re = u,l , /v = 1.8 x 

Therefore, in order to describe the motion of the liquid around the bacterium, the 
Navier-Stokes equation can be substituted by the (linear) Stokes equation. That 
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FIGURE 1 .  Magnetic bacterium from Lake Chiemsee (Southern Germany) with a single chain of 
prismatic magnetosomes aligned along its axis. The bacterium was sampled from the uppermost 2 cm 
of the sediment in a water depth of 20 m. For TEM observation the bacterium was fixed with 2.5 % 
glutaraldehyde in a 0.1 M cacodylate buffer (pH 7.2), rinsed with water and stained with 2 % uranyl 
acetate solution. Electronmicrograph by H. Vali. 

FIGURE 2.  Swimming tracks of magnetic bacteria in different rotating magnetic fields, The bacteria 
were recorded under a light microscope with a video camera. The recorded sequences were digitally 
processed with a real-time image processor; to visualize the tracks the built-in real-time function 
‘trace’ was used. (a)  Zero magnetic field: the bacteria move straight but in different directions. (b)  
Rotating magnetic field: the bacteria move in circles (field strength H = 1.6 Oe, rotation period T = 
10 s). (c)  Rotating magnetic field: here the viscous forces dominate the swimming behaviour, the 
period Tis too short and the bacteria cannot follow the field, they ‘break out’. H = 1.6 Oe, T = 2.5 s. 
Bars 50 pm. 

means, in the case described above, a linear relationship between magnetic torque M 
and angular velocity u: 

Here 7 is the (constant) viscosity of the surrounding liquid and F is the scalar resistance 

M = -7Fu. (1) 

7-2 
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factor, which depends only on the form of the bacterium. In a rotating magnetic field 
both torques add up to zero: 

pBsin (p ,  B) = -7Fw. (2) 

Because sin (p, B) < 1 the bacterium can only rotate up to a boundary frequency wb, 
for which the equation 

holds. The boundary frequency ob can be determined from optical measurement of the 
swimming path of the bacterium under the microscope (figure 2c). We can therefore 
determine p from (3), if we know the resistance factor F. 

The determination of the resistance factor F of magnetic bacteria is therefore a main 
objective of this paper. 

pB = ~ F w ,  (3) 

3. Calculation of resistance factors and simulation of the movement of 
magnetic bacteria 

3.1. The concept of resistance tensors 
The force K and torque M which act upon a bacterium are related linearly to its 
forward speed v and angular velocity o (and, if there is any, the angular velocity of the 
flagella relative to the body of the bacterium). More generally than ( 1 )  this can be 
written for a rigid body as 

(Happel & Brenner 1965, Chap. 5) .  No net force acts on the body and the magnetic 
torque balances the viscous torque. 

F,,, eZ, etc. are tensors, which only depend on geometry. They are called resistance 
tensors. Real bacteria however have flagella, which rotate relative to the body and thus 
propel the bacterium. For reviews on bacterial locomotion and flagellar propulsion see 
Wu, Brokaw & Brennen (1975). If we consider this, we obtain 

/ n 

instead of (4). Here mie' is the angular velocity of the flagellum (or bundle of flagella) 
i relative to the body; n is the number of the flagella or bundles (n = 1 or 2). 

In the most simple cases (e.g. an ellipsoid rotating around one of its axes of 
symmetry), a torque M will only lead to a rotation with o 1 1  M and we can therefore 
directly obtain a scalar resistance factor F. If this is not possible, we invert (4) or (5 )  
for v and o. By numerical integration we calculate the movement of the bacterium in 
a magnetic field and for a given magnetic moment. Then we obtain in particular the 
boundary frequency. Using (3) we can thus calculate a scalar 'apparent resistance 
factor'. With this apparent resistance factor, we can still apply (3) to determine the 
magnetic moment. 
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FIGURE 3. Model of a planar bacterium. In the special case af = 180" we have 
the model of a linear bacterium. 

In (4) and (9, Mvis refers to an arbitrarily chosen point and u refers to the same 
point. Since o x (r - rl) = o x ( r  - ro) + w x (ro - rt), a rotation about a point rl with w 
is equivalent to a rotation about a point ro with o combined with a translatory 
movement with u = w x (ro - rl). Thus u and consequently the resistance tensors are 
also arbitrary. So we have to be clear about our point of reference. 

3.2. Methods for calculating resistance factors 

3.2.1. The method using ellipsoid formulae 
There exist analytical formulae for the resistance factors of spheres and ellipsoids. 

For translatory motion these are given by Oberbeck (1876), and for rotation they are 
given by Jeffery (1922). 

From these sources we calculate the following resistance tensor elements for a 
prolate ellipsoid of revolution with a long semiaxis a in the x-direction and short 
semiaxes b in the y-  and z-directions: 

16x 1 6n(b2 + a') 
FxX = - F U Y  = Fz" - 1671 

F Y Y  = FZ,Z, = 16x 
qo + a, a'' 11 40 + P o  b2' 22 3P0' 22 22 - 3(b2PO + a2ao)' 

FT," = 

All other elements are zero. In the above, 

1 a-e  2 1 a-e a 1 a-e .  
qo = --In-, a =----In- o -  ,+-ln- 

e a+e 0 e2a e3 a+e' ' -X 2e3 a+e' 

e := (a2 - b2)l/* is the eccentricity. 
We used these formulae to calculate resistance factors of bacteria, which consist of 

two or three prolate ellipsoids of revolution rigidly connected: one ellipsoid for the 
body, and a very thin ellipsoid for a flagellum or a bundle of flagella at one end or at 
either end. However, we cannot consider the mutual interaction of the ellipsoids with 
this concept. The interaction of body and flagellum was studied by Higdon (1979), but 
his analysis is confined to the case of a spherical cell body. We do not want to restrict 
ourselves to such a special geometry and therefore neglect the interaction. 
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Dimensionless For real bacteria For model bacterium 
quantity in water in glycerol 

Independent 
Viscosity 1 
Length 1 
Time 1 1 s  
B-field 1 0.1 G 

1 0-3 kg m-l s-' 
1 w P P I  

1 kg m-' s-' 
1 cm 
- 

Dependent 
Resistance factor 1 1 pmY [8 pm3] 1 cm3 
Magnetic moment 10-l2 G cm3 [8 x G cm'] __ 

TABLE 1. Conversion from dimensionless to dimensional quantities 

We considered two special cases with two ellipsoids : in the ' linear case ' the long axes 
of both ellipsoids are parallel to each other and orthogonal to the torque; in the 'planar 
case' both long axes of the ellipsoids are orthogonal to the torque, but not necessarily 
parallel to each other. Both special cases (see figure 3) can be described by a scalar 
resistance factor. 

3.2.2. Slender-body theory 
With the slender-body theory we can approximately calculate the viscous drag of a 

body that is much longer than it is broad. This is the case for a flagellum, or if flagella 
combine in a bundle (e.g. see Jarosch 1967; Macnab & Ornston 1977). With a greater 
error we can also apply it to the body of a bacterium. 

According to Keller & Rubinow (1976) the zeroth approximation a(O)(s) to a(s) (the 
force per length divided by - 8 q )  is given by 

[2/- i(s) i(s)] . (uo(s) - v(s)}. 
1 

4 In a(s) 
a(O)(s) = ~ 

The first iterate a(l)(s)  is 

1 
4 In a(s) 

a(')(s) = a ' " ~ ( , r ) + - - - ~ [ 2 Z - i ( s ) i ( s ) ] ~ ( a ~ ~ ( s ) j + a t o ~ ( s )  In [4s(l -s)] 

+ a?)(s) i(s) [In (4.4 1 - s)) - 21 

Here, r = ro(s), 0 < s< 1, is the centreline C of an oblong body of length 1, with a 
circular cross-section but otherwise arbitrary shape, with s being the arclength along 
C; v(s) is the translational velocity of the body surface at s, uo(s) is the fluid velocity 
in the absence of the body at the point r0(s), and a(s) 4 1 is the radius of the body cross- 
section at s. 

Also, R, = ro(s) - ro(s + t ) ,  / is the unit matrix, i(s) is the unit vector tangential to C, 
j is the unit vector in the direction of the component of uo(s) - v(s) perpendicular to i, 
a1 is the component of cc in the direction of i, and a2 is the component of a in the 
direction of j .  

Keller & Rubinow (1976) state that their result for the first iterate of the force per 
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FIGURE 4. Resistance factor F of a linear model bacterium (see text and figure 3) as a function of the 
x-coordinate of the centre of rotation. The rotation axis is in the z-direction. Calculations were done 
with the ellipsoid formulae. 

length agrees with the result of Cox (1970), although the latter is in a quite different 
form. Other treatments of slender-body theory are given by Batchelor (1970), Cox 
(1971) and Tillet (1970). However, these publications deal with the more special cases 
of an axisymmetric (Cox 1971 ; Tillet 1970), or at least straight (Batchelor 1970) slender 
body. Since we do not confine ourselves to these special cases, we find it most 
convenient to apply the formulae obtained by Cox (1970) and Keller & Rubinow 
(1976) in all our calculations. 

By integration we can calculate the total force and the total torque, related to an 
arbitrary point on the body. By doing this for six special movements of the body (three 
translations and three rotations) we can calculate the resistance tensors of a body of 
length 1. These can be scaled to any length 1, by multiplying F,, by lo, F,, and F,, by 
1; and F,, by 1;. 

3.3 .  Results 
In the following we describe numerical results (and corresponding experimental results 
in the next section) for various shapes. In all calculations we chose dimensionless units. 
Table 1 shows several ways of converting from dimensionless to dimensional 
quantities. The first four conversions may be chosen arbitrarily, the other conversions 
then depend on these. 

The numerical values in this section were chosen to make comparison with the model 
experiment of $4 particularly easy, using table 1 for conversion. The models there are 
meant to be roughly scaled images of real bacteria. The exact dimensions depend on 
the manufacturing process and have no particular significance. 

The first example shows the resistance factor of a bacterium as a function of the 
position of the rotation axis (figure 4). The bacterium consists of an ellipsoid of 
revolution with length 4.79 and diameter 0.62 (‘body’) and another ellipsoid of 
revolution with length 4.79 and diameter 0.01 (‘flagellum’). For convenience we will 
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FIGURE 5. Resistance factor F for a linear bacterium (see figure 3), rotating around its centre of ‘free’ 
rotation as function of the length of the flagellum 2a,. The body has the same dimensions as model 
bacterium 1 and the flagellum has the diameter 0.01. The rotation axis is in the z-direction. 
Continuous lines were calculated with the ellipsoid formulae, dashed lines with slender-body theory. 

call this ‘model bacterium 1’ (these dimensions were chosen to facilitate the 
comparison with the model bacterium of 94). The minimum torque occurs at the centre 
of ‘free’ rotation (x,y) = 0.931, i.e. when there is no external force applied. 

Figure 5 shows an example of how the scalar resistance factor depends on the length 
of the flagellum. If the flagellum has a length of 4.79 (same length as the body) F = 
200 results, compared to F =  314 for an ellipsoid of double length (i.e. length 9.58, 
diameter 0.62). The latter value would be expected if the bacterium had a whole bundle 
of flagella as wide as the body. Both values do not differ too much, whereas the 
resistance factor strongly depends on the length of the flagellum. 

In figure 6(a, b) we show an example of how the scalar resistance factor depends on 
the angle af between the body and flagellum. In figures 5 and 6 the continuous lines 
were obtained by using the ellipsoid formulae. The dashed lines we obtained with 
slender-body theory. 

The ellipsoid formulae yield higher torques than slender-body theory for small 
angles af, probably because we neglect the interaction between body and flagellum: 
each of these reduces the torque acting on the other. In the extreme case of the rotation 
of two thin ellipsoids next to each other, the torque is only slightly greater than for a 
single ellipsoid. 

Next we considered a more realistic model bacterium, which consists of an 
ellipsoidal body of length 4.79 and diameter 0.62 and a flagellum, which looks similar 
to a helix, but is bent towards the centreline at one end where it touches the body. The 
axis length of the helix is 4.79, the wavelength is also 4.79, the diameter of the helix is 
2.08, and the diameter of the cord is 0.01. For convenience we will call a bacterium with 
these dimensions ‘model bacterium 2’. For the body we used the ellipsoid formulae, for 
the flagellum the slender-body theory. The mutual interaction was neglected. 

Figure 7(a, b) shows the motion of a ‘dead’ magnetic bacterium (i.e. with no relative 
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FIGURE 6. Resistance factor Ffor a planar model bacterium 1 (see figure 3), rotating around its centre 
of 'free' rotation as a function of the angle 8, between body and flagellum, which vanes between 180" 
and 60". The rotation axis is in the z-direction. These angles correspond to the end points of the 
curves. Continuous lines were calculated with the ellipsoid formulae, dashed lines with slender-body 
theory. 

rotation of body and flagellum and no forward motion) in a rotating magnetic field. 
For an angular frequency of the B-field wB = 0.11 3, the bacterium can follow the 
rotation (figure 7a). The phase difference between the magnetic moment and the 
magnetic field converges towards approximately 79". Therefore the magnetic torque is 
pBsin 79". We conclude that the boundary frequency wb is close to O.l13/sin 79" z 
0.1 15. In figure 7(b) with wB = 0.13 the bacterium cannot follow the rotation of the 
magnetic field any more, but tilts in the direction of the z-axis. 

The reason for this behaviour can be explained as follows. When the angle between 
the magnetic field and the magnetic moment becomes greater than 90" the direction of 
the magnetic moment in the (x, y)-plane becomes metastable. If the magnetic moment 
points somewhat out of the plane (because of thermal agitation or asymmetry of the 
bacterium) the magnetic field causes a torque which acts in a way that turns the 
magnetic moment further out of the plane. This effect becomes most pronounced, when 
the magnetic field and the magnetic moment point in nearly opposite directions. 

A boundary frequency wb = 0.1 15 corresponds to an apparent resistance factor of 
219. With the model experiment described in the next section we could only determine 
the resistance tensor element F Z .  We call this the ' one-dimensional approximation'. 
For a model bacterium 2 in the (x,y)-plane we calculated, for different rotation angles 
of the axis of the helical flagellum, values of FZ,Z, between 245 and 253. The difference 
in the value, which we obtained by the iteration above, gives an idea of how good the 
results of the model experiment are if there are no other sources of error. 

The next example in figure 8(a-c) shows some trajectories of living magnetic 
bacteria, i.e. with relative rotation of body and flagellum, in a magnetic field (magnetic 
field intensity here is 50 x the one chosen for the dead bacterium). For wB = 5 (figure 
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FIGURE 7. Components of the magnetic field B and the vector ub which represents the long half-axis 
of the body of the bacterium and points away from the flagellum as a function of time, for a 'dead' 
model bacterium 2. The angle between body and axis of the helix of the flagellum is 8f = 140". The 
magnetic moment is 8 and points in -a,-direction. The viscosity of the surrounding liquid is 1. (a) 
Angular frequency of the magnetic field wB = 0.1 13, and (b)  wB = 0.130. 

8a) the trajectory converges approximately towards a circle in the (x, y)-plane. The 
slow movement in the z-direction is probably due to the asymmetry of the bacterium. 
The bacterium can follow the rotation of the field and the calculated trajectory agrees 
with what one expects and observes (see figure 2a). 

For oB = 5.25 (figure 8b), the trajectory spirals around the z-axis because the body 
again tilts. This means a reduction of the viscous drag for rotation around the z-axis. 
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FIGURE 8. Trajectories of a 'living' magnetic bacterium for different angular frequencies of the 
rotating magnetic field. The flagellum points ahead in the direction of motion and rotates 100 times 
per time unit. The magnetic field (intensity = 5 0 ~ )  rotates in the (x,y)-plane. Otherwise as in figure 
7. The arrows indicate the direction of motion. Projections of the trajectory (of the centre of the body) 
into the (x,y)-plane and into the (x,y)-plane (if necessary shifted sidewards) are shown. (a) oB = 5, 
(b) oB = 5.25, (c) wB = 6. 

We can then reach a new equilibrium with an angle of exactly 90" between the magnetic 
moment and the magnetic field, so that the bacterium neither tilts more nor is drawn 
back to the (x,y)-plane. The angle rp, by which the bacterium tilts, can be determined 
from the trajectory. One can calculate the boundary frequency wb approximately from 
the angle cp: wb = w,/coscp. In this case, we get wb = 5.24, corresponding to an 
apparent resistance factor 240. If we divide wb by 50 (because of the 50-fold field 
intensity) we get a value which is lower by a factor 0.91 1 than for the dead bacterium. 
This is what we expect: one can show that the direction of the magnetic moment 
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approximately moves on a cone; if the cone angle is a, the maximum torque which can 
be provided on a time average is smaller by a factor COSCL. 

For oB = 6 (figure 8 c), the first part of the projection of the curve into the (x, y)-  
plane looks similar to what one observes under the microscope (see figure 2 b), although 
the bacterium has already tilted here. If we neglect this latter effect we can explain this 
part of the trajectory as follows. The bacterium turns left because it tries to follow the 
magnetic field. However, because of the viscous drag it falls more and more behind, 
until the magnetic moment points in the direction opposite to the magnetic field. Then 
the movement changes to a right turn, because the torque changes sign; the magnetic 
field and the magnetic moment rotate towards each other until they are parallel; now 
the bacterium again turns left and so on. But then the effect of tilting becomes so 
pronounced that the bacterium mainly moves in the negative z-direction. This is not 
observed for real magnetic bacteria under the microscope. Because of the restrictions 
imposed by the glass walls of the slide and the cover glass, their movements are 
approximately confined to a plane. As soon as the boundary frequency is reached, their 
trajectories change from circles to the shape which we described above (see figure 2c). 

Finally we considered how the torque, which acts on a rotating body, increases near 
a boundary. This is important as the bacteria under the microscope are usually near 
one of the boundaries. We calculated the resistance factor F for a cylinder which 
rotates around an axis orthogonal to the boundary and orthogonal to its axis of 
symmetry as a function of the distance 6 to the boundary. We used the formulae, which 
are given by Yang & Leal (1983), in which the body is simply described by its radius 
(i.e. we essentially confine ourselves to cylindrical bodies). In our special case we obtain 
from these formulae (referring to the centre of the body) a resistance factor 

11 3 

Here, 

e := In (f ) , 
x := integration parameter along the bacterium, 

d := distance of the boundary, 

1 2d 
K(x,  d )  := - - { [ I - X ) '  + 4d2]"2 - [ ( l + ~ ) '  + 4d']1/2} + B(x, d )  +-k(x, d ) ,  

X X 

1-x f + x  g(x, d )  :=sinh-l-- + sinh-l- 
2d 2d ' 

1-x f + X  

[( 1 - x)' + 4 7  + [( 1 + x)' + 4d 'I1/' ' 

h(x, d )  := 

0(e3) is a term of order s3. 
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FIGURE 9(a,b) .  Calculated resistance factor F of a cylinder of length 4.1 and diameter 0.505 as a 
function of the distance IS of the centre of the cylinder to the horizontal boundary. The cylinder has 
a horizontal axis of symmetry and rotates around a vertical axis. F, is the resistance factor in an 
infinite viscous medium. 

In figure 9(a, b) the result is shown for a length 4.1 and a diameter 0.505 (see also figure 
1.1). According to this approximation, the deviation of the resistance factor from the 
limit for 6-tm is only 1 YO, if 6 x 2.6. 

3.4. Discussion of errors 
The total error that affects the theoretical determination of resistance factors and 
boundary frequencies comes from a combination of several errors. For each error we 
give in brackets our best guess. 

(i) The error due to neglecting the interaction of several parts of the body. The 
magnitude of this error was estimated by calculating the velocity field of the liquid 
which surrounds a moving ellipsoid. Formulae are given by Oberbeck (1876) and 
Edwardes (1892). It was found to be a few percent for a straight body, and somewhat 
bigger for a bent one. (3 % for a straight body, 10 YO for a bent one.) 

(ii) The error of the slender-body approximation. This is at least 14 %, if applied to 
the body; about 5 %  if applied to a straight flagellum; more, if the flagellum is bent 
because then the interaction among different parts will be represented only 
incompletely. The magnitude of the error was estimated by applying slender-body 
theory to ellipsoids, for which we have exact results for comparison. (14% for body 
only, 10 % for body plus flagellum/a on one end, 9 % for body plus flagellum on both 
ends.) 

(iii) The error due to representation of non-ellipsoidal bodies by ellipsoids. (24 YO for 
body only - this value is the difference between the resistance factors of bodies (a) and 
(c) in figure 12, as obtained by slender-body theory, and 9 YO for body plus flagellum/a 
- this value is the difference between the resistance factors of body (e) in figure 12, and 
model bacterium 1 in 93.3,  as obtained by slender-body theory.) 

(iv) The error due to the effect of boundaries. (9% - see 94 for details.) 
(v) The error due to the shape of the bacterium being only shown with some 

uncertainty, so that the model is only an imperfect image of the reality. If, for example, 
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the length of the flagellum is increased by 10 YO for model bacterium 1 ,  the resistance 
factor increases by 13 YO. A 5 YO error in overall size causes a 16 YO error of the 
resistance factor. Therefore, with the present possibilities of observations, this error is 
of the same order of magnitude as the other errors, and our calculations are accurate 
enough. (1 6 YO .) 
Assuming that the above errors are independent, we obtain the following estimates for 
the total error: 

30Y0, if we use the ellipsoid formulae for the body only; 
21 YO, if the bacterium is ‘straight’ and we use the ellipsoid formulae for body plus 

23 YO, if the bacterium is ‘bent’ and we use the ellipsoid formulae for body plus 

23 YO, 21 YO or 20 YO, if we use slender-body theory for the body only, for body plus 

flagellum/a ; 

flagellum/a ; 

flagellurnla on one end or on both ends respectively. 

4. A model experiment for the determination of the scalar resistance factor 
of magnetic bacteria 

4.1. Experimental set-up 
A model experiment which determines the component of the torque in the z-direction 
for rotation of a model bacterium around the z-axis is useful if the error of the one- 
dimensional approximation is not too large and the Reynolds number is small enough. 

We have seen in the last section that a one-dimensional approximation gives us a 
resistance factor which differs by only a few percent from the one we get for a three- 
dimensional calculation. As we shall see, an error of this order of magnitude is inherent 
to both the model calculations (see previous section) and the experiment; so the first 
condition is fulfilled well enough. 

Our models are about 5 cm long and were spun with about 1 rotation per minute 
(i.e. o z 0.1 s-l) in glycerol (v x m2 s-l). Therefore, we obtain a Reynolds number 
Re x lu/v = l2w/2v x 0.1. This is much larger than for real bacteria, but even here 
inertial forces were not noticeable. If inertial forces were to play a noticeable role 
this would lead to a deviation from the linear relation between angular velocity and 
torque (see equation (l)), which we did not observe. Therefore, the second condition 
is fulfilled well enough. 

The experimental set-up is shown in figure 10. It consists of three parts, which can 
rotate relative to each other (ideally around a vertical axis): the parts at rest in the 
laboratory, the revolving parts which are spun by the motor, and the parts which hang 
on a torsion thread. 

The cylindrical container (at rest in the laboratory) has a diameter of about 44 cm 
and is 46 cm high. It is filled with glycerol and contains a second floor, whose height 
can be adjusted within the glycerol, so that one can vary the distance of the model from 
the solid boundary. 

Above the container there is a platform with the revolving parts of the experiment. 
The most important revolving parts are: the galvanometer coil, mirror and model; the 
magnet, in the field of which the galvanometer coil is placed; the optical system fixed 
to the magnet. 

On the torsion thread of the galvanometer the mirror, coil and model are suspended 
as one rigid unit. The model is fixed at the end of a thin ceramic rod and submerged 
in the glycerol. When the system is revolving a viscous torque is acting on the model 
which causes a deflection of the mirror. The deflection is then monitored via a light 
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FIGURE 10. Schematic sketch of the model experiment. 

beam by a photodiode. The resulting and amplified current is fed to the coil thus tuning 
a negative feedback. The feedback current is then a measure of the torque acting on 
the model. 

4.2. Results of the model experiment 
The results show how the resistance factor depends on the form of the body, the length 
and the form of the flagella, and the distance to a solid boundary. In order to calibrate 
the experiment, we used rotating spheres: for these the resistance factors can easily be 
calculated and so we could deduce the factor for the conversion of feedback current to 
resistance factor. This factor is strongly temperature dependent as it is proportional to 
the viscosity of the glycerol. 

By changing the height of the second floor, we first determined experimentally the 
dependence of the resistance factor on the distance of the model from a solid boundary, 
which is (like a glass slide under the microscope) perpendicular to the rotation axis. The 
model used was a cylinder of diameter 0.505 cm and length 4.1 cm. In figure 11 (a, b)  
resistance factors are plotted against the distance from the centre of the model to the 
floor. From the logarithmic representations one can see that the resistance factor, as 
a function of distance 6 to the boundary, may be fitted in the form 

F = &(l +(60/6)s), s x 2, & = 48.82 cm3. (9) 

From figure 11 one can also see that the deviation of the resistance factor in an 
infinite liquid is only 1 YO for 6 x 4.6 cm. In comparison we obtained computationally 
a deviation of 1 Yo for 6 x 2.6 cm (see figure 9). For 6 = 4.6 cm we get from our 
computation a deviation of only 0.3 YO (i.e. the measured deviation is about three times 
larger than the computed one). 

During our microscopic observation, the real bacteria are at least 2 4  pm away from 
the boundary. This corresponds to 0.8-1.6 cm in the model experiment as the scaling 
factor is about 4000. For this distance, the model experiment gave a deviation of 
between 38 YO and 9 YO from the value for the infinite liquid. However, the calculation 
yielded only a deviation of between 9 YO and 2.8 YO. 
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FIGURE 12. Resistance factors (with error estimates) for different bodies, divided by the resistance 
factor of an ellipsoid of the same length and diameter. 

Next we measured resistance factors for a series of different bodies (see figure 12) and 
compared them with the respective theoretical results for ellipsoids of the same length 
and width (6.01 cm x 0.755 cm, resp. 4.79 cm x 0.62 cm) : 

(a)  ellipsoid; 
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(b) cylinder of length 6.01 cm, diameter 0.755 cm; 
(c) model body (without flagella) comprising a cylinder of length 4.79 cm and 

diameter 0.62 cm, with spherically rounded ends; 
( d )  model body, with wire spiralling around the body (axis length of the spiral about 

4.5 cm, wavelength about 3.1 cm, diameter of the spiral about 1.5 cm, thickness of the 
wire 0.02 cm). The wire is fixed on one end of the body. This is an as realistic as possible 
model of a living Magnetobacterium bavaricum (see next section), but without 
considering the curvature of the body (the scaling factor is approximately 4000); 

(e) model body, with a straight wire of 4.79 cm length and a thickness of 0.01 cm 
fixed to one end of the body; 
(f) model body, with a helical wire fixed to one end of the body: axis length of the 

spiral about 4.8 cm, wavelength about 2.4 cm, diameter of the spiral about 0.9 cm, 
thickness of the wire 0.02 cm; 

(g) model body, with wires (like d )  on both ends. One of the wires is bent; 
(h) like (g), but both wires are straight. 
The wires consisted of constantan and represented flagella or bundles of flagella. In 

figure 12, the results, normalized to the corresponding ellipsoid, are shown with error 
estimates and contrasted to numerical results. The errors are calculated in a similar 
fashion to that explained in 993.4 and 4.3. However, since we know the shape of the 
model bacterium very well, and the boundaries are far enough away, we do not have 
to consider the last two errors in either case, and therefore obtain a smaller total error. 
One can see, how the resistance factor changes with deviation from the ellipsoidal form 
(bodies a and b). More important, however, is the influence of flagella on the resistance 
factor, especially when they protrude from the body. Except for (d) ,  for which the 
slender-body approximation obviously does not work very well, in all cases the error 
bars either overlap or almost overlap. However, in every case the numerical calculation 
gives a smaller resistance factor than the experiment. 

4.3. Discussion of errors 
The total error, which affects the experimental determination of the resistance factors, 
again comes from a combination of several errors. As before, for each error we give in 
brackets our best guess: 

(a) error in the normalization of temperature (0.45 YO); 
(b) error due to imperfections in the experimental set-up (originally about 12 % ; 

reduced to about 2 %  due to a greater number of measurements); 
(c) error due to the one-dimensional approximation (10 %) ; 
( d )  error due to the effect of boundaries (9 %) ; 
(e) error due to the shape of the bacterium being only known with some uncertainty, 

so that the model is only an imperfect image of reality (16% - see $3.4 for details). 
Assuming that the above errors are independent, we obtain a total error of 21 YO. 

5. Determination of the magnetic moment of real magnetic bacteria 

5.1. Materials and experimental methods 
For the measurements described in the following a special type of magnetic bacterium 
was selected, which occurs in high abundance in most of the lakes of Southern Bavaria 
and is named Magnetobacterium bavaricum. 

The rod-shaped bacterium is about 10pm long and contains several bundles of 
chains of magnetosomes (figure 13). The number of magnetosomes in this bacterium 
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FIGURE 13. Transmission electron micrograph of a magnetic bacterium from Lake Chiemsee with 
multiple chains of bullet-shaped magnetosomes (Magnelobacteriurn bavaricurn). The number of 
magnetosomes in this type of bacterium is to more than 500. 

is more than 500. This is exceptional compared to other magnetic bacteria which 
usually have 1&50 (for comparison see figure 1 and Blakemore 1982). 

The experiments on bacteria in rotating magnetic fields were done in a 
‘bacteriodrome’ (Petersen et al. 1989 and Petermann et al. 1990), a set-up of two pairs 
of Helmholtz coils that produces a homogeneous magnetic field at the platform of a 
light microscope stripped of all of its magnetic parts. The magnetic field rotates in the 
horizontal plane. The field intensity can be varied between 0 and 10 G, the period of 
one cycle of rotation being between 00 (steady field) and 0.5 s. 

The bacteria were observed in a chamber of 25 pm thickness made of a cover slip on 
a glass slide sealed with Valap (vaseline, paraffin, lanolin, 1 : 1 : 1). The specimen was 
observed in brightfield mode with the condenser diaphragm fully closed to reach 
maximal depth of focus. The C2400 (Hamamatsu Photonics Deutschland, Herrsching 
FRG) camera control unit was used for analogue contrast enhancement and for 
analogue shading correction in order to obtain a high-contrast image free of shading 
(Weiss, Maile & Wick 1989). This was recorded on a video cassette recorder (model 
VO-5800, Sony Corp.). The recorded sequences were further digitally processed with 
a real-time image processor (Hamamatsu C 1966 Photonic Microscopy System). To 
visualize the tracks of the bacteria the built-in real-time functions ‘ rolling average’ 
(over 256 frames) and ‘trace’ were used. ‘Trace’ combines self-substraction of images, 
thereby removing non-motile image elements (sand particles etc.), with an ac- 
cumulation of each fifth frame in the frame memory. The resulting live video sequences 
were digitally contrast-enhanced (Weiss et al. 1989). Still pictures were obtained by 
photography from the monitor. 

5.2. Observations relevant to the estimation of the resistance factor F 
First the shape, number and position of the flagellar filaments were determined. For 
this purpose, the boundary frequency wb, up to which the bacteria can follow the 
rotation of the magnetic field, was measured as a function of the magnetic field H .  If 
the form of the bacterium does nor depend on the rotation frequency, the relationship 
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FIGURE 14. Positioning of the flagella in a (a)  dead and (b)  a living Magnetobacterium bavaricum, 
as identified by video-enhanced high-resolution light microscopy. 

should be approximately ob - B (i.e. Blob should be independent of B) .  If, however, 
the form changes with increasing rotation frequency, for example if the flagella bend, 
Blob should decrease with the increasing B since the viscous drag of a bent flagellum 
is smaller than that of a stiff one. 

In the case of Magnetobacterium bavaricum we found that Blw,  decreases as a 
function of B for dead bacteria, whereas it does not for living bacteria. The reason for 
this became clear when we observed the bacteria directly by video-enhanced high- 
resolution light microscopy. With this instrument the flagella can be made visible. 

The result of these observations is sketched in figure 14(a, b). Dead specimens show 
several flagellar filaments (approximately 8), which all begin at the front end (which 
refers to the direction of the magnetic field and therefore the forward swimming 
direction). The flagellar filaments have different lengths : most of them are rather short 
(about one third of the length of the body), only few (about 1 to 3) are as long as the 
body. The long filaments seem to be partially waveshaped which means that, in reality, 
they are helical. These flagellar filaments bend while the bacterium rotates in the 
magnetic field, and so the resistance factor decreases with increasing rotation 
frequency. 

For microscopic observation of the flagella of the living bacteria we had to slow 
down the movement by the use of a medium of high viscosity ( N 15 P). Then it can be 
seen that all flagella, which are connected to the body at the front end, combine into 
one bundle. This forms a helix which spirals around the body and rotates when moving 
forward. One can see only the parts of the helix which are lateral to the body, and 
which therefore look like ‘hooks’. The rotation of the helix appears in the two- 
dimensional projection as if the ‘ hooks’ were running backward. This interpretation 
is in accordance with the description of other bacteria which are flagellated only at one 
end (e.g. Jarosch 1967; Block, Fahrner & Berg 1991) and is also supported by our 
observation that the resistance factor does not change with the frequency of the 
rotating magnetic field. 
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FIGURE 15. For caption see facing page. 
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Motion analysis TEM-observation 

Bacterium 1 13+3 16 
Bacterium 2 19+4 22 
Bacterium 3 64+ 13 51 

TABLE 2. Magnetic moment ,u of individual bacteria (Magnetobacterium bavaricum) (1 O-’* G cm3) 

We obtain additional proof for the flagella of Magnetobacterium bavaricum being 
fixed at the front end (referring to the forward direction of motion) by comparing the 
motion of living and dead bacteria in figure 15(a). This figure, and figure 15(b), were 
produced by adding several video frames, which succeed each other with a constant 
time difference in the frame memory of the video microscopy image processor. Here the 
magnetic field rotates counterclockwise and the living bacteria start swimming towards 
top left. Now one can compare each position of the living bacteria with the 
corresponding one of the dead bacteria (figure 15a, bottom left and top centre). 

We see that the centre of rotation of the dead M .  bavaricum is asymmetric relative 
to its body, because of the viscous drag of the flagellar filaments. The comparison of 
corresponding positions of dead and living bacteria shows then that the flagellum is 
positioned at the front end (with respect to forward swimming direction). The 
asymmetry of rotation of a dead M .  bavaricum is also shown in figure 15(b). 

5.3. Results 
When determining the magnetic moment of M .  bavaricum from the boundary 
frequency wb using equation (3) we have to apply different resistance factors F for dead 
and living bacteria respectively. 

For a dead bacterium the influence of the flagellar filaments on Fis high and not well 
defined (figure 14a). The situation is clearer when dealing with a living bacterium 
(figure 14b). For our experiments with living bacteria we chose the experimentally 
determined resistance factor, which is 1.6 times the resistance factor of an ellipsoid of 
the same length and width (case din figure 12). The corresponding results are given in 
table 2. Here the magnetic moment of three different magnetic bacteria, determined by 
the measurement of the boundary frequency wb is listed in the first column. 

After determination of wb in the bacteriodrome, the respective bacteria were 
magnetically guided onto a grid for electron microscopy and finally observed under the 
transmission electron microscope (TEM). The magnetic moment of the bacteria was 
then calculated from the size and number of magnetosomes as seen in the TEM. This 
calculation assumes single-domain magnetite particles, with a spontaneous mag- 
netization of 480 G and perfectly parallel alignment of their respective magnetic 
moments. The results are given in table 2. 

The results of the two methods of determination of the bacterial magnetic moment 
agree very well (taking into account the uncertainty in exactly measuring the volume 
of the magnestosomes from TEM pictures). The disagreement can be completely 
explained by the sources of error stated above. 

FIGURE 15. (a)  Motion of dead (top and bottom left) and living Magnetobacterium bavaricum in a 
counterclockwise-rotating magnetic field. Note the asymmetry of rotation of the dead bacteria due 
to unipolar flagellation from video-enhanced light microscopy in ‘trace mode’. From a comparison 
of corresponding positions of dead and living bacteria it can be deduced that the flagellum is 
positioned at the front end (with respect to the swimming direction). (b)  Dead Magnetobacterium 
bavaricum. Magnetic field: 3 Oe, period of rotation: 5.6 s. 
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6. Conclusions 
We have determined resistance factors and boundary frequencies for magnetic 

bacteria numerically and with a model experiment, as prerequisites for the deduction 
of the bacterial magnetic moment from motion analysis. Experimental and numerical 
determination agree within their error bounds. 

The resistance factor strongly depends on the number and shape of flagella. The 
experimental determination of the magnetic moment of real bacteria requires, 
therefore, observing the magnetic bacterium together with its flagella when it is forced 
by the external magnetic field to rotate in a liquid of known viscosity. This is possible 
with the use of video-enhanced microscopy in a bacteriodrome. 

We thank W. Maile, Institute of Zoology, Technical University of Munich, for his 
help with the high-resolution light microscope. Sylvia Chamberlain critically read the 
manuscript. We are also grateful to the two anonymous reviewers who helped to clarify 
several issues in the paper. This research was supported by the Deutsche 
Forschungsgemeinschaft . 
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